Representation of a complemented algebra on a locally compact space
نویسندگان
چکیده
منابع مشابه
Locally Compact Quantum Groups. A von Neumann Algebra Approach
In this paper, we give an alternative approach to the theory of locally compact quantum groups, as developed by Kustermans and Vaes. We start with a von Neumann algebra and a comultiplication on this von Neumann algebra. We assume that there exist faithful left and right Haar weights. Then we develop the theory within this von Neumann algebra setting. In [Math. Scand. 92 (2003), 68–92] locally ...
متن کاملHomological Algebra with Locally Compact Abelian Groups
In this article we study locally compact abelian (LCA) groups from the viewpoint of derived categories, using that their category is quasi-abelian in the sense of J.-P. Schneiders. We define a well-behaved derived Hom-complex with values in the derived category of Hausdorff topological abelian groups. Furthermore we introduce a smallness condition for LCA groups and show that such groups have a...
متن کاملArveson Spectrum On Locally Compact Hypergroups
In this paper we study the concept of Arveson spectrum on locally compact hypergroups and for an important class of compact countable hypergroups . In thiis paper we study the concept of Arveson spectrum on locally compact hypergroups and develop its basic properties for an important class of compact countable hypergroups .
متن کاملOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 1970
ISSN: 0019-2082
DOI: 10.1215/ijm/1256052961